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Annualization is necessary whenever one needs a temporally intensive property that can be used to compare the values of a temporally extensive property describing periods of different duration.  For instance, one might want a property with which to fairly compare the two-year return of a portfolio with the three-year return of another portfolio.  Annualized returns provide the comparable intensive measure by which to judge the relative merit of the total returns for periods of different lengths of time. This chapter will address the general meaning of the annualization of a financial property and extend its application from simple returns to encompass properties that are obtained from performance attribution, such as sector allocation and stock selection.

It will be seen that, in general, there are two issues to be addressed when annualizing a particular property.  First one must determine the intent for which the property was created.  This is best achieved by deciding what question, and corresponding formalization in an equation, provides the fundamental relation that ties the property to be annualized to its purpose.  Second, one needs to decide how to treat other properties that often arise in the fundamental equation for the property that is to be annualized. We will find that for all geometric properties the annualized factor is the geometric mean of the actual factors. Thus, only arithmetic and mixed arithmetic and geometric properties pose substantial challenges for annualization.  These are the challenges that this chapter will engage.
Be Guided by the Question

As usual, the best way to determine the proper definition of a property is to begin by clearly formulating the question that the property is intended to answer. 

Build Upon the Accepted View of the Annualization of Returns

Beginning with the case that already has an accepted answer, on the assumption that a return is a clearly understood and appropriately motivated financial property, consider how to formulate the question that an annualized return is constructed to answer.  The intent of this question is that its answer must be a measure of the property of a return sequence that will allow return sequences of different lengths to be compared on their merit. 

For simplicity, this chapter’s initial focus will be on sequences of an integral number of single consecutive years. Afterwards, the solutions will be generalized to sequences of periods of arbitrary duration and contiguity.  The path to these generalizations is not as simple as might be desired.  To simplify this presentation a little, when the same point is made in regards to multiple issues it will sometimes not be repeated in each context.  However, many variations on the same point sometimes require repetition in order to help ensure the balance between clarity of presentation and the precision of the content presented.

What Question Do We Wish an Annualized Return to Answer?

The standard formal definition for the annualized return of a sequence of yearly returns makes this annualized return the proper answer to the following question: What single annual return, replicated each year, leads to the same return as was actually achieved over the whole period?  Or, more precisely: What constant (the same for each year) return can be substituted for each return, in a sequence of actual yearly returns, such that the constant return reproduces the actual total return for the whole period? Thus, we are seeking a constant value that, when substituted for all the varied yearly values, leads to the same result as obtained by those various yearly values in concert.

Annualized Returns Defined

What then is desired is the value for the annualized return that when substituted for each term in the set of the various actual returns, {Rt}, in the standard formula for linking returns, gives the same return factor for the whole period as does the linking of these actual returns.  That is, an annualized return, RA, is defined by the equation:  

t (1 + RA) ≡ t (1 + Rt),

where the products over t on both sides of the equation span the same set of sub-periods.  

Since all factors in the left hand product are identical, an explicit closed-form (i.e. analytical, non-iterative) solution for RA in terms of the given yearly returns, {Rt}, can be obtained:

1 + RA = [t (1 + RA)](1/N) = [t (1 + Rt)](1/N), 

where N is the total number of yearly returns in the sequence of actual yearly returns being considered. 
The above discussion shows that, formally, the annualized return, RA, that answers the previous question is the return associated with that return factor (1 + RA) that is equal to the geometric mean of the yearly return factors of the non-overlapping sequence of actual yearly returns {Rt}. (Annualized terms will always have a capital A as a subscript in place of their temporal subscript.  All terms ascribed to a generic period, t, will have a lower case t as a subscript.  All terms ascribed to the whole period, which is the union of all the years considered, will have a capital T as a subscript. (T = N years.)  In addition, for simplicity of presentation, formulas will often be stated in terms of return factors, 1 + R, rather than in terms of returns, R, since obtaining one from the other is trivial.)

Using Annualized Returns to Compare Sequences of Returns

Once in possession of the annualized return for two sequences of returns, even if the sequences are of different lengths, it is them possible to meaningfully compare them by answering the question:  Which sequence has a larger annualized return?  That is: Which sequence would require a larger constant yearly return to replicate that sequence’s actual total return over its whole period?  Thus, the annualized return supplies the measure by which the merit of the two sequences of returns can be compared since the sequence with the larger annualized return did better in extracting a gain from an investment when given the particular time period it spanned.
Annualizing Portfolio and Benchmark Returns
The above formalization can be applied to the annualized return of both a portfolio, 

t (1 + RPA)  = t (1 + RPt),

and a benchmark,

t (1 + RBA)  = t (1 + RBt),

where RPt is the return of the portfolio for year t and RBt  is the return of the benchmark for year t. 

Active Returns

At the portfolio level, the contribution to the active return,  is defined as the active return itself, which is the difference between the portfolio return factor and the benchmark return factor for a particular time period.   

Beginning by first employing the geometric definition of difference, at the portfolio level the geometric active return is the geometric difference between the portfolio return factor and the benchmark return factor for the same year t: 

gt ≡ (1+RPt)/(1+RBt).

Consider the two return sequences {RPt} and {RBt} with the same number and span of yearly elements and for the same particular time period T where T is the union of the non-intersecting set of years: T ≡ U{t}.  The geometric active return for the whole period, gT, is given, in terms of the portfolio {RPt} and benchmark {RBt} return sequences, by:  

gT ≡ (1+RPT)/(1+RBT) 

= [tεT (1 + RPt)] / [tεT (1 + RBt)] 

= tεT [(1 + RPt) / (1 + RBt)] 

=  tεT [1+ gt].

Alternately, employing the arithmetic definition of difference, a portfolio-level arithmetic active return is the arithmetic difference between the portfolio return factor and the benchmark return factor for the same period: 

at ≡ (1+RPt) – (1+RBt)  

= RPt – RBt.

Thus, the portfolio-level arithmetic active return for T years is: 

aT ≡ (1 + RPT) – (1 + RBT) 

= [tεT (1 + RPt)] – [tεT (1 + RBt)]

= [tεT (1 + RBt + at)] – [tεT (1 + RBt)].

Annualizing Portfolio-Level Geometric Active Returns

In an approach perfectly parallel to the annualization of simple returns, an annualized portfolio-level geometric active return is defined by the requirement that, if it had been the geometric active return every year, the actual total geometric active return for the whole period would have been reproduced.  That is, the annualized geometric active return answers the question: What constant active return can be substituted for each actual active return in the sequence of actual yearly portfolio-level geometric active returns such that it reproduces the actual geometric portfolio-level active return for the whole period? Or simply: What yearly portfolio-level geometric active return would have reproduced the actual geometric active return for the whole period? That is, what gA solves the equation:

tεT (1 + gA) ≡ tεT [(1 + RPt) / (1 + RBt)] = tεT (1 + gt)  = 1 + gT?

It immediately follows that the annualized geometric active return is:

gA = [1 + gT]1/N 

= {tεT [(1 + RPt) / (1 + RBt)]}1/N 

= (1 + RPA) / (1 + RBA) 

= 1 + (RPA – RBA) / (1 + RBA).

This simply says that the annualized geometric active return is the geometric difference between the annualized portfolio return factor and the annualized benchmark return factor:

gA = (1 + RPA) / (1 + RBA) – 1.
Annualizing Portfolio-Level Arithmetic Active Returns

Again defining annualization as above, the annualized portfolio-level arithmetic active return answers the question: What constant active return can be substituted for each actual active return in the sequence of actual yearly arithmetic portfolio-level active returns such that it reproduces the actual arithmetic portfolio-level active return for the whole period? However, this question is not well formed, since it does not differentiate between the annualized active return being relative to the actual series of benchmark returns or relative to the annualized benchmark return. The first possibility is that the annualized arithmetic active return, aA, be the answer to the question: What unchanging annualized arithmetic active return should be added each year to the actual benchmark return of each year to reproduce the actual active portfolio return for the whole period? In this case, the defining equation for the annualized arithmetic active return, aA, would be:

 [tεT (1 + RBt + aA)] –  [tεT (1 + RBt)] ≡ [tεT (1 + RBt + at)] –  [tεT (1 + RBt)] 

= [tεT (1 + RBt + {RPt – RBt})] –  [tεT (1 + RBt)] 

= [tεT (1 + RPt)] –  [tεT (1 + RBt)] =  aT,

This can be simplified to:

tεT (1 + RBt + aA) = tεT (1 + RPt) = tεT (1 + RBt + at).

In general, this equation has no closed form solution for aA and can best be solved by iteration.  Since it is an N-degree polynomial, it can have multiple solutions for the unknown annualization term. Whenever this occurs for any of the equations solved by iteration that are discussed in this chapter, the solution closest to the arithmetic average of the actual term will be chosen.  If there are no real-valued solutions then there is no annualized value, i.e. there is no real valued constant that can replicate the effect of the varying terms in the series.

The defining annualization question for portfolio-level arithmetic active return can alternately be generalized to: What annualized arithmetic active return should be added each year to the annualized benchmark return to reproduce the actual annualized active return for the whole period? That is, aA’ is the solution of the equation:

[tεT (1 + RBA+ aA’)] – [tεT (1 + RBt)] ≡ [tεT (1 + RPt)] – [tεT (1 + RBt)] =  aT?

This can be simplified to:

tεT (1 + RBA+ aA’) = tεT (1 + RPt) = (1 + RPA)N
and, since here all the terms in the left-hand term are independent of t, it can be solved directly to give:

aA’ = RPA – RBA.
This second approach leads to a simpler result since the first approach has no closed form solutions and, thus, requires implementation employing approximation methods.  Nevertheless, the question that the first approach answers better corresponds to the actual financial situation that annualization intends to address since the first approach focuses on the actually encountered situation by defining the active return as the constant amount over the actual value of each element in the benchmark return sequence rather than defining the active return as the constant amount over the constructed constant annualized benchmark return.

An Example of an Annualized Active Return

Consider a simple case of the annualization of active returns.  For the first year let the portfolio return be zero and the benchmark return be negative 50%.  For the second year let the portfolio return be 100% and the benchmark return be positive 50%. Thus, the arithmetic active return is 50% each year. The factor values are:
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The corresponding return values, rounded to the nearest percent, are:
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Thus, the annualized geometric active return that reproduces the actual total geometric active return when imposed each year is 63%.  It is obvious that the annualized arithmetic active return that reproduces the actual total arithmetic active return when imposed each year is 50% since, in this example, that is also the actual arithmetic active return each year.  The arithmetic difference between the annualized portfolio return and the annualized benchmark return is 55%, which is 5% more than the annualized arithmetic active return.  This provides a clear reason why the less simple definition of annualized arithmetic active return is more appropriate to the financial intent of annualization then is the approach that simply takes the difference between the annualized portfolio return and the annualized benchmark return.  That is, when the active return is the same each year then its value must also be the annualized active return because it is the correct intent of annualization to provide the active return that can be substituted for all the yearly active returns and replicate the total active return for the whole period.

The essential innovation of this chapter is that, contrary to what has been commonly assumed, the arithmetic active return is not annualized by simply taking the arithmetic difference between the annualized portfolio return and the annualized benchmark return, aA ≠ RPA – RBA.  Rather, the essential intent of annualization requires that the annualized arithmetic active return is the constant active return, aA, that can recreate the actual arithmetic active return, aT, for the whole period,  

aT = [tεT (1 + RPt)] – [tεT (1 + RBt)]  

= [tεT (1 + RBt + at)] – [tεT (1 + RBt)]

≡ [tεT (1 + RBt + aA)] – [tεT (1 + RBt)].
The correctness of this innovation is starkly supported by this numerical example, since this new approach to annualization provides that the annualized arithmetic return is 50% when the actual arithmetic active return is 50% each year. 

Other Attempts at Annualization of Active Returns

In contrast to this chapter’s approach, the most common view of annualization takes the annualized active arithmetic return to be the arithmetic difference between the annualized portfolio return and the annualized benchmark return. For instance, Krishna Prasad argues for this common approach in a book chapter titled  “Annualised Attribution” and Damien Laker, in Compoundinghappens.com, takes this common approach to be true by definition.  

However, it is difficult to understand how this common calculation of the annualized active arithmetic return can be correct since, in the above example, it implies that, when the active arithmetic return is 50% each year, this common calculation implies that the annualized active arithmetic return is 55%. This simple example provides the most powerful reason for denying the validity of this historically common approach.
In yet another approach to annualization, in his December 2005 Performance Perspectives newsletter, David Spaulding takes the annualized active arithmetic return factor to be the geometric mean of the active arithmetic return factors:
1 + aDSA ≡ [tεT (1 + at)](1/N).

This is a direct extrapolation to annualized arithmetic active returns of the form derived for the geometric case and Spaulding does not offer a justification that would explain why the same mathematical form would be applicable to a different type of mathematical entity that answers a different question. 
In a discussion of annualization between Carl Bacon, Damien Laker and David Spaulding, presented on Investment-Performance.com, Bacon seems to agree with Spaulding’s approach to annualized arithmetic active return while at the same time disparaging all arithmetic calculations.  On the other hand, Laker, in specific regards to Spaulding’s approach, says “annualization simply doesn't make sense on arithmetic excess returns” since “arithmetic excess returns simply don't annualize.”  Spaulding’s approach at least implies that the annualization of a constant active arithmetic return is that constant active arithmetic return itself, as is required by the very intent of annualization.  However, since Spaulding’s approach geometrically links arithmetic active returns as if they were simple returns, it makes it difficult to see what financial question this calculation is meant to answer.  It is probably the problems suggested by this difficulty that make Laker dismiss the “sense” of such an approach.  As will be seen throughout this chapter, there are clear interpretations that lead to the linking of all geometric terms and to the linking of arithmetic terms that can be interpreted as pure returns.  However, there are not found any interpretations that lead to the linking of arithmetic active returns by themselves. From the point of view of this chapter, the additional problem with Spaulding’s approach is that, when the actual arithmetic active returns vary, his annualized arithmetic active return will not replicate the total portfolio return when added to each period’s benchmark return and then linked together:

aT tεT (1 + RBt + at) – tεT (1 + RBt) 

= tεT (1 + RPt) – tεT (1 + RBt) 

≠tεT (1 + RBt + aDSA) – tεT (1 + RBt).
It is a strength of the approach advocated in this chapter that while it links only returns and other geometric terms, and not arithmetic differences of returns, it still implies that the annualization of a constant active arithmetic return is that constant active arithmetic return itself.  Such success follows naturally from employing the method of having financial terms be defined as the answer to clearly formulated and precise financial questions.
Annualization Applied to General Properties

It is seen that annualization is straightforward when there is only one property involved, as is the case in the annualization of returns.  It is even straightforward in the case of the annualized geometric active returns.  However, sometimes, annualization becomes subtler when multiple properties are involved, such as in the annualization of arithmetic active returns in the presence of the benchmark return.  This subtlety will continue to lead to there being alternate defining questions for some of the properties that will be considered.  The best alternative will always be chosen to be the answer to the most financially relevant question, where the preferred question will be the one that was most central to the introduction of the term being annualized, which often comes down to preferring the actual over some more constructed context.

The Structure of Attributes

It is sufficient for the illustrative purposes of this chapter, which is simply to demonstrate the proper formal application of annualization, to employ the general approach of the set of previous generation performance attribution models.  While it would be more economically meaningful, instead, to consider attribution models that follow from a proper decision-evaluation methodology that always directly answers proper financial questions, this is not the place to discuss this more advanced approach to attribution, especially since we will not here be following up, even in regards to annualization, with a discussion of decision-risk and the use of decision-based performance attribution to directly support and enhance the actual investment process.

Taking, instead of the question-based view of attribution, the purely formal view that attributes are simply the components into which an attribution methodology decomposes an active return, allows, for present considerations that focus upon annualization, the decomposition to be either geometric, arithmetic or a mixture of both.  It is also sufficient for the current purpose of explicating the methodology of annualization to consider formal decompositions into only two types of components: Allocation and Selection.  

Let Ac,t and Sc,t respectively be the single period, model-dependent, allocation and selection that the attribution model under consideration assigns to the category c over period t. There are many approaches to how these single-period terms should be related to the empirically prior single-period category- and issue-level weights and returns for the portfolio and benchmark. Thus, Ac,t will be different in different models.  Similarly, the relationship of Sc,t to these weights and returns will also be model-dependent.  Probably the most common single-period arithmetic decomposition of the single-period active return into a sum of an allocation and selection alone for each category employs:

Aac,t = (WPc,t – WBc,t)*(RBc,t – RBt)

and

Sac,t = WPc,t *(RPc,t – RBc,t).

Due to the relationship between the portfolio-level arithmetic and geometric return, the mixed geometric and arithmetic attributes can be defined in terms of the arithmetic attributes:

Aagc,t = Aac,t /(1 + RBt)

and 

Sagc,t = Sac,t /(1 + RBt).

No category level pure geometric attributes are widely popular since it is problematic to formally geometrically decompose the ratio of sums

1 + c (WPc,t * RPc,t)

-------------------------

1 + c (WBc,t * RBc,t)

into a product of terms, each of which is clearly associated with a single category, c, in a manner that makes their algebraic formulations the precise answers to precisely formulated financial questions.  The difficulties that arise in this regard are an important reason why the pure geometric approach is not very popular.  (If instead the approach was turned around to start with the economic question, as is done for annualization in this chapter, then proper next generation category-level geometric attributes can be straightforwardly constructed.  Again, this is not the place for introducing such advanced methods for attribution itself.) 

It simply will be assumed that, however Agc,t and Sgc,t for the year are defined in terms of weights and returns for the category-level in the geometric case, the total, portfolio-level, allocation, Agt, and selection, Sgt, for year t for the geometric case can be obtained by geometrically rolling up the category level terms for that period:

1 + Agt ≡ c (1 + Agc,t)

and

1 + Sgt ≡ c (1 + Sgc,t),

where:

gt ≡ (1 + Agt)*(1 + Sgt).

and 

1 + RPt = (1 + RBt)*(1 + gt).
Thus:

tεT (1 + RPttεT [(1 + RBt)*(1 + gt)] 



=tεT [(1 + RBt)* (1 + Agt)*(1 + Sgt)]



=tεT {(1 + RBt)* [c (1 + Agt)]*c (1 + Sgt)]},

and

gT = tεT [(1 + RPt) / (1 + RBt)] 


= tεT [(1 + RBt)*(1 + gt) / (1 + RBt)]

=tεT {(1 + RBt)* [c (1 + Agc,t)]*c (1 + Sgc,t)] / (1 + RBt)}

=tεT c [(1 + Agc,t)*(1 + Sgc,t)].

Define the geometric contribution of category cj to the year t geometric active return, gc,t, by:

gc,t + 1 ≡ (1 + Agc,t)*(1 + Sgc,t).

Thus:

gT + 1 = tεTc (gc,t + 1).

For the arithmetic case the corresponding relations are obtained by summing.  Thus, the portfolio-level arithmetic allocation for an individual year is obtained by summing the arithmetic allocations for all the categories for the year:

Aat ≡ c (Aac,t).

Similarly, the total arithmetic selection for the year is just the sum of the category-level arithmetic selections for the year:

Sat ≡ c (Sac,t).

Then, the sum of the total arithmetic allocation and total arithmetic selection for the year give the arithmetic active return for this single year, t:

at = Aat + Sat
where, as previously indicated when active returns were introduced, this arithmetic active return for each year, t, can be added to the benchmark return for the year to give the portfolio return for the year:

RBt + at = RPt,

Thus, the series of yearly portfolio return factors can be linked to get the portfolio return factor for the whole period:

1 + RPT= tεT (1 + RPt) = tεT (1 + RBt + at).

From this it follows that the arithmetic active return for the whole period can be written:
aT = (1 + RPT) – (1 + RBT)
= [tεT (1 + RBt+ at)] – [tεT (1 + RBt)].

Thus, substituting the sum of the portfolio-level arithmetic allocation and selection for the arithmetic active return gives:

aT = [tεT (1 + RBt + Aat + Sat)] – [tεT (1 + RBt)].

Further decomposing the portfolio-level terms back into category-level terms leads to:

aT = {tεT [1 + RBt + c (Aac,t + Sac,t)]} – [tεT (1 + RBt)].
This last equation is the “arithmetic” formulation that corresponds to the geometric formulation discussed above that is reproduced again here for direct comparison:

gT + 1 = tεTc [(1 + Agc,t)*(1 + Sgc,t)]}.

Define the arithmetic contribution of category cj to the year t arithmetic active return, ac,t, by:

ac,t ≡ Aac,t + Sac,t,

(Note, the arithmetic contribution of category cj is not equal to the active return of category cj:

ac,t ≠ RPc,t – RBc,t.)
Thus:

aT = {tεT [1 + RBt + c (ac,t)]} – [tεT (1 + RBt)].
Finally, for the mixed arithmetic and geometric case, definitions can be constructed for Aagc,t and Sagc,t such that the corresponding relations to those above are given, as in the pure arithmetic case, by:

Aagt ≡ c (Aagc,t)

Sagt ≡ c (Sagc,t),

Only now these geometrically roll up to the geometric active return factor for the whole period: 

gT + 1= tεT [(1 + Aagt)*(1 + Sagt)],

just like in the pure geometric case.  Therefore, the mixed arithmetic and geometric case presumes:

gT + 1= tεT [(1 + c Aagc,t)*(1 + c Sagc,t)].

These classical formulations of the relationship of the model-dependent, single-period component attributes, Ac,t and Sc,t, to their geometric, arithmetic and mixed roll-ups will be employed in the formulation of the annualization of these first generation definitions of attributes.  

It is noted that we will often be considering single-period component attributes, Aat, Sat, Aac,t, Sac,t, and Agt, Sgt, Agc,t, Sgc,t, and Aagt, Sagt, Aagc,t, Sagc,t, which are the components of, or “contributions” to, the single-year’s active return, 

gt + 1 = (1 + Agt)*(1 + Sgt) = c [(1 + Agc,t)*(1 + Sgc,t)] = c (1 + gc,t)

or 

at = Aat + Sat = c (Aac,t) + c (Sac,t) = c (Aac,t + Sac,t) = c (ac,t)
or

gt + 1 = (1 + Aagt)*(1 + Sagt) = (1 + c Aagc,t)*(1 + c Sagc,t).

Thus, geometric and arithmetic approaches both have reasonably defined category-level contributions to the active return:

1 + gc,t = (1 + Agc,t)*(1 + Sgc,t)

and

ac,t = Aac,t + Sac,t.

For the mixed approach it is more difficult to construct a parallel category-level contribution to active return, agc,t, that is appropriately related to the mixed category allocation, Aagc,t, and selection, Sagc,t, and, in fact, the difficulty created for the mixed approach by category-level single period components within attribution often causes the following question to be ignored: For a single period, what total contribution to the geometric active return of the whole portfolio did the single category cj make?  (The multi-period category-level attribution effects, Aagc,T and, Sagc,T, also introduce considerable complications for the mixed approach.)
This discussion of single-period terms is in contrast to considering, as is often required in multi-period attribution, the single-period components of the active return of the whole period, T: Aat/T, Sat/T, Aac,t/T, Sac,t/T, Agt/T, Sgt/T, Agc,t/T, Sgc,t/T, and Aagt/T, Sagt/T, Aagc,t/T, Sagc,t/T, where, for instance, Aat/T is the arithmetic allocation of the single year t that contributes to the whole multi-year period T.  Thus, Aat/T is different from Aat, which is the arithmetic allocation of the single year t that contributes to the single year t.  Aat/T is also different from AaT, which is the allocation of the whole period T that contributes to the whole period. The “contributions” of a year to the active return of the multi-year period directly combine to give attributes of the multi-year period as a whole as follows:
AaTt (Aat/T) = tc (Aac,t/T),

SaTt (Sat/T) = tc (Sac,t/T),

where

aT = AaT SaT,
and

AgT + 1 = tεT (1 + Agt/T) = tεTc (1 + Agc,t/T)],

SgT + 1 = tεT (1 + Sgt/T) =tεTc (1 + Sgc,t/T)],

where

1 + gT = (AgT + 1)*( SgT + 1),
and

AagT + 1= tεT (1 + Aagt/T) = tεT (1 + c Aagc,t/T),

SagT + 1= tεT (1 + Sagt/T) = tεT (1 + c Sagc,t/T),

where

1 + gT = (AagT + 1)*( SagT + 1).

These multi-period attributes that are relative to the whole period are not relevant to annualization whose intent only involves single-period attributes and their proper constant surrogates.  However, it can be noted that some of these attributes are formally identical to their single-period counterparts:

Agc,t/T = Agc,t, 

Sgc,t/T = Sgc,t,

Agt/T = Agt,

Sgt/T = Sgt,

Aagt/T = Aagt,

and 

Sagt/T = Sagt.

The first of these identities states that the geometric contribution of allocation of category c on year t to the geometric active return of the whole period T is equal to the geometric contribution of the allocation of category c on year t to the geometric active return of year t.  The other identities have analogous meanings.  There are no such direct equalities for the arithmetic and for the category-level mixed approach: 

Aat/T ≠ Aat,

Aac,t/T ≠ Aac,t, 

and

Aagc,t/T ≠ Aagc,t,

and similar inequalities for selection.  These inequalities give rise to the challenges of multi-period attribution.  However, these multi-period arithmetic and mixed challenges need not be addressed when investigating annualization.  

It can be noted that, at the level of simple attribution, even prior to addressing annualization, challenges for all approaches have now been discussed.  The geometric approach must find consistent and meaningful definitions for Agc,t and Sgc,t by decomposing 

[1 + c (WPc,t * RPc,t)]/[1 + c (WBc,t * RBc,t)].  

The arithmetic approach must find consistent and meaningful definitions for Aat/T, Sat/T, Aac,t/T and Sac,t/T so that 

AaTt (Aat/T) = tc (Aac,t/T) 

and 

SaTt (Sat/T) = tc (Sac,t/T).  

And the mixed approach must address the absence of agc,t, agc,T, Aagc,T and, Sagc,T that arises because it’s defining formalism rolls up from the category to the portfolio level before it combines allocation and selection and before it links periods.
Annualizing Portfolio-Level Geometric Attributes
Extending the core concept of annualization, beyond returns and active returns, to the portfolio-level geometric attributes Agt and Sgt presents us with the question: What constant allocation can be substituted for each actual allocation in the sequence of actual yearly geometric allocations and selections such that it reproduces the actual geometric active return for the whole period?  Or: What constant allocation, AgA, can replicate the effect of the actual yearly geometric allocations on the whole period’s geometric active return?  From the structure of the geometric attributes we see that:

1 + gT = tεT [(1 + Agt)(1 + Sgt)].

Thus, this annualization question is formalized as finding the portfolio-level geometric allocation, AgA, such that:

tεT [(1 + AgA)(1 + Sgt)] ≡ tεT [(1 + Agt)(1 + Sgt)].

This simplifies to: 

tεT (1 + AgA) = tεT (1 + Agt),

or

1 + AgA = {tεT [(1 + Agt)]}(1/N).
Alternately, consider the question: What constant allocation can be substituted for each actual allocation in the sequence of actual yearly geometric allocations such that it reproduces the actual geometric allocation for the whole period?  Or: What constant allocation can replicate the effect of the actual yearly geometric allocation in creating the total geometric allocation?  This is formalized:

tεT (1 + AgA) = tεT (1 + Agt).

This reproduces the same solution as before:
1 + AgA = {tεT (1 + Agt)}(1/N).

However, this second approach to the annualization of geometric allocation is not as fundamental, since it isolates the annualization question in the context of allocation rather than placing it in the context of the more fundamental concept of active return whose explication is the ultimate goal of attribution.

Next addressing selection, we note that, in the classical approach to attribution, there is a symmetry in geometric attribution at the total portfolio-level such that the questions for selection that correspond to the questions for allocation lead to exactly parallel results:

gT + 1 = tεT [(1 + Agt)(1 + Sgt)] ≡ tεT [(1 + Agt)(1 + SgA)],
or, if one annualized selection in the context of total selection:

tεT (1 + SgA) =tεT (1 + Sgt).

Again, both approaches reduce to:

1 + SgA = {tεT (1 + Sgt)}(1/N).

Alternately, consider the question: What constant selection can be substituted for each actual selection in the sequence of actual yearly geometric selection and annualized allocations such that it reproduces the actual geometric active return for the whole period?  Or, more simply: What constant geometric selection along with annualized geometric allocation can reproduce the geometric active return?

tεT [ (1 + AgA)(1 + SgA)] = (gT + 1) = tεT [ (1 + AgA)(1 + Sgt)].

This again reduces to the same result as above:

1 + SgA = { tεT [(1 + Sgt)]}(1/N).

All approaches to defining the annualization of the portfolio-level geometric allocation and selection series {Agt} and {Sgt} lead to identical results and, thus, it is not necessary to choose between these geometric approaches.  Nonetheless, the first approach is more fundamental since it puts the definition of the attribute in the context of the fundamental question for which attribution is pursued and uses the actual values directly involved in its pursuit, thus, also making it the answer to a more fundamental financial question.
Annualizing Portfolio-Level Arithmetic Attributes
Further extending the core concept of annualization to the total arithmetic attributes Aat and Sat presents us with the question: What constant allocation can be substituted for each actual yearly arithmetic allocation in its fundamental relationship to attribution such that it reproduces the same result as the actual series of yearly arithmetic allocations?  As in the previous cases, first it is necessary to ascertain the fundamental equation for annualized allocation.  As presented above, this means that we need to formulate the question that allocation is intended to answer.  If what is required is simply the analogue of the first geometric equation than we can formulate the question: What constant allocation can be substituted for each actual allocation in the sequence of actual yearly arithmetic allocations and selections and actual benchmark returns such that it reproduces the actual arithmetic active return for the whole period? Or, more simply: What constant yearly arithmetic allocation can replicate the total active return created by the effect of each actual yearly arithmetic allocation in the context of all other values being the actual ones?

[tεT (1 + RBt + AaA + Sat)] – [tεT (1 + RBt)] ≡ [tεT (1 + RPt )] – [tεT (1 + RBt)] =  aT.

Or 

tεT (1 + RBt + AaA + Sat) = tεT (1 + RPt ) = tεT (1 + RBt + Aat + Sat).
Since the terms that are multiplied together on the left, which include the annualized arithmetic allocation that is sought, are not all the same, in general the equation can only be solved for AaA by iteration.  This is just like the situtation for the case of the annualized arithmetic active return above.
Annualized selection can then be similarly defined by the question: What constant yearly arithmetic selection can replicate the actual active return for the whole period if it were substituted for each actual yearly arithmetic selection in the actual sequence of returns?
[tεT (1 + RBt + Aat + SaA)] – [tεT (1 + RBt)] ≡ [tεT (1 + RPt )] – [tεT (1 + RBt)] =  aT.

Or 

tεT (1 + RBt + Aat + SaA) ≡ tεT (1 + RBt + Aat + Sat).

This approach will not lead to annualized allocation and annualized selection values that add up to the annualized active return.  In order to obtain that result, the defining equation for annualized arithmetic selection must be interpreted as the response to the question: What constant selection can replicate the same resulting active return for the whole period when it is substituted for each actual yearly arithmetic selection in the sequence of returns obtained if the investment process had subsequently implemented its selection decisions following its annualized allocation decisions? Or: What constant selection, subsequent to an the annualized arithmetic allocation, can replicate the total active return created by the effect of each actual yearly arithmetic selection subsequent to the actual (or annualized) arithmetic allocations?  That is, the defining equation for annualized selection would be:

tεT (1 + SaA + AaA  + RBt) = tεT (1 + Sat + AaA  + RBt) 

= tεT (1 + Sat + Aat  + RBt) 

= tεT (1 + RPt) 

= tεT (1 + at  + RBt).

This implies: 

tεT (1 + SaA + AaA  + RBt) = tεT (1 + aA  + RBt),

from which it can be seen that:

SaA + AaA  = aA .

However, this last approach not only assumes that annualized selection is defined in the presence of annualized allocation, instead of in the context of all other terms being actual, it treats the presumably parallel allocation differently than the selection and the parallel benchmark return differently than the allocation term by assuming that the benchmark return remains actual instead of being taken as already annualized as is done with the allocation term.  Thus, though it does not make the total arithmetic formalism as simple as one might have initially assumed it to be, with annualized selection and annualized allocation adding to give annualized active return, the approach requiring iteration in the presence of all other terms being actual correctly answers the more financially meaningful questions that annualization is intended to address.  Thus, the more financially meaningful approach implies:

 SaA + AaA  ≠ aA,

despite the fact that

Sat + Aat  = at.

While this might not have been expected, this inequality in no way invalidates the economic meaning of each of these annualized terms that directly follows from the financial appropriateness of their defining question.  This is similar to the conclusion above that 

aA ≠ RPA – RBA,
despite the fact that

at = RPt – RBt.
Annualizing Portfolio-Level Mixed Geometric and Arithmetic Attributes
The appropriate defining question for portfolio level attributes in the mixed approach is: What constant allocation can be substituted for each actual allocation in the sequence of actual portfolio-level yearly mixed allocations and selections such that it reproduces the actual mixed portfolio-level active return for the whole period?  Or: What constant allocation can replicate the total active return created by the effect of each actual portfolio-level yearly mixed allocation?  It will now be seen that, at the portfolio level, the fundamental equation of the mixed geometric and arithmetic approach to attribution has the same form as the pure geometric approach to attribution. 

From its defining question as just stated, the defining equation for annualized portfolio-level allocation in the mixed approach is:
tεT [(1 + AagA)*(1 + Sagt)] ≡ tεT [(1 + Aagt)*(1 + Sagt)] =  (gT + 1).

This is of the same form as the defining equation for the geometric approach:

tεT [(1 + AgA)(1 + Sgt)] = tεT [(1 + Agt)(1 + Sgt)] = (gT + 1).

Similarly for the annualized portfolio-levels selection in the mixed approach:

tεT [(1 + Aagt)(1 + SagA)] ≡ tεT [(1 + Aagt)(1 + Sagt)] = (agT + 1).

It follows that the annualization of portfolio-level allocation and selection is the same process in the mixed approach as in the geometric approach.

Annualizing Category-Level Geometric Attributes 

Further extending the core concept of annualization to the category-level geometric attributes Agcj,t and Sgcj,t presents us with the question: What constant allocation can be substituted for each actual yearly geometric allocation for (the single) category cj in the sequence of actual yearly geometric allocations and selections such that it reproduces the actual geometric active return for the whole period?  Or: What constant yearly geometric allocation for category cj can replicate the total geometric active return created by the effect of each actual yearly geometric allocation for category cj?

gT + 1 = tεTc (1 + Agc,t)]*c(1 + Sgc,t)]} = tεT[c≠cj (1 + Agc,t)]*(1 + Agcj,t)*c(1 + Sgc,t)]}

    ≡ tεT[c≠cj (1 + Agc,t)]*(1 + Agcj,A)*c(1 + Sgc,t)]}.

This can be simplified to obtain:

1 + Agcj,A = [tεT (1 + Agcj,t)](1/N).

Similarly for the annualization of the category-level geometric selection, whose solution is symmetric to the solution for allocation:

1 + Sgcj,A = [tεT (1 + Sgcj,t)](1/N).

The annualization of the category-level contribution to geometric active return follows. Since:

 (gT + 1) = tεTc (1 + Agc,t)]*c(1 + Sgc,t)]} = tεTc (1 + gc,t)]} = tc≠cj (1 + gc,t)]*(1 + gcj,t)},

then:

tεTc≠cj (1 + gc,t)]*(1 + gcj,t)} ≡tεTc≠cj (1 + gc,t)]*(1 + gcj,A)}.

Thus, for the category-level contribution to active returns, the annualized geometric term is again the geometric mean of the actual geometric terms:

1 + gcj,A=tεT (1 + gcj,t)](1/N).

Annualizing Category-Level Arithmetic Attributes 

The arithmetic version of the question answered by the category-level attributes is: What constant yearly arithmetic allocation of category cj can be substituted for category cj in the sequence of actual yearly arithmetic allocations and selections such that it reproduces the actual arithmetic active return for the whole period? Or: What constant yearly arithmetic allocation for category cj can replicate the total active return created by the effect of each actual yearly arithmetic allocation for category cj?

Since:

[tεT (1 + RBt + Aacj,t + cAac≠cj,t + Sat)] – [tεT (1 + RBt)] =  aT = [tεT (1 + RPt )] – [tεT (1 + RBt)],

then:

[tεT (1 + RBt + Aacj,A + cAac≠cj,t + Sat)] – [tεT (1 + RBt)] ≡  aT = [tεT (1 + RPt )] – [tεT (1 + RBt)],

or:

tεT (1 + RPt   –  Aacj,t + Aacj,A) = tεT (1 + RPt ), 

and in a parallel manner for selection:

tεT (1 + RPt  –  Sacj,t + Sacj,A) = tεT (1 + RPt ).

Similarly for the category-level contribution to arithmetic active return:

aT = {tεT [1 + RBt  + at]} – [tεT (1 + RBt)] = {tεT [1 + RBt  + c (ac,t)]} – [tεT (1 + RBt)].

This implies:

[tεT (1 + RPt)] = tεT [1 + RBt  + c (ac,t)] = tεT [1 + RBt  + c≠cj,t (ac,t) + acj,t]

and, thus, the annualization of the arithmetic contribution to the active return is introduced in the following manner:

tεT [1 + RBt  + c≠cj,t (ac,t) + acj,t] ≡ tεT [1 + RBt  + c≠cj,t (ac,t) + acj,A],

or:

tεT [1 + RPt] = tεT [1 + RPt  – acj,t + acj,A].

Annualizing Category-Level Mixed Arithmetic and Geometric Attributes 

The mixed approach answers the parallel questions: What constant allocation can be substituted for the mixed allocation of category cj in the sequence of actual yearly mixed allocations and selections such that it reproduces the actual mixed (i.e. geometric) active return for the whole period? Or: What constant yearly mixed allocation for category cj can replicate the total geometric active return created by the effect of each actual yearly mixed allocation for category cj?

tεT [(1 + Aagcj,A + cAagc≠cj,t)*(1 + Sagt)] ≡ tεT [(1 + Aagt)*(1 + Sagt)] = gT + 1,

or:

tεT (1 + Aagt –  Aagcj,t + Aagcj,A) = tεT (1 + Aagt),

and similarly for the parallel annualization of the category-level mixed selection:

tεT (1 + Sagt –  Sagcj,t + Sagcj,A) = tεT (1 + Sagt).

As previously mentioned, there is no obvious category-level mixed contribution to the active return to annualize.

Summary for Sequences for Unit Years

The formal aspects of the above results can be summarized for the geometric case by the simple statement that, just as for the annualization of returns, the annualized factor is the geometric mean of the actual factors:

tεT (1+ XgA) = tεT (1 + Xgt)

where Xgt is any geometric factor for a year.  That is, Xg can be any of the following: R, g Ag, Sg, gc, Agc, or Sgc.  

This general conclusion, summarizing the final formulas arrived at in above discussions concerning the geometric approach, directly follows from XgA being defined as the answer to: What annualized geometric factor can replace all its actual factors in the formula for the geometric active return?

The formal content of this general argument can be summarized as follows. The geometric active return, gT, depends on the geometric factor, Xgt, via:

gT =tεT (1 + RPt)]/tεT (1 + RBt)] =tεT {[(1 + RPt)/(1+ Xgt)]*(1+ Xgt)}/tεT (1 + RBt)]
Here, the geometric factor, (1+ Xgt), is formally thought of as trivially being factored out of the geometric portfolio return factor, (1 + RPt) to leave (1 + RPt)/(1+ Xgt).  The important point is that  (1 + RPt)/(1+ Xgt) is taken to be independent of the term being annualized, Xgt.
Now we can implement the definition of the annualized factor as the replacement of the corresponding actual factors that does not change the total active factor:

gT =tεT[(1 + RPt)/(1+ Xgt)]*(1+ Xgt)}/tεT(1 + RBt) ≡tεT[(1 + RPt)/(1+ Xgt)]*(1+ XgA)}/tεT(1 + RBt).
This than reduces to the geometric mean relationship for annualization properly argued for in all of the above more economically meaningful presentations:

tεT (1+ XgA) = tεT (1 + Xgt).

A summary of all the final formulas previously arrived at for the arithmetic results can alternately be arrived at by formally arithmetizing the defining relation for the annualized geometric factor:

aT =tεT (1 + RPt – Xat + Xat)} – tεT (1 + RBt) tεT (1 + RPt – Xat + XaA)} – tεT (1 + RBt).

Here, what is important is that the term 1 + RPt – Xat is taken to be independent of the term being annualized, Xat.
This reduces to:
tεT (1 + RPt – Xat + XaA) =tεT (1 + RPt ).

Similarly, as arrived at in the above discussions, at the portfolio-level the final formulas for the mixed approach match those of the geometric approach.  At the category-level the above formulas for mixed allocation and selection (but not active return) can be obtained from:

gT + 1 = tεT [(1 + Aagt)*(1 + Sagt)] = tεT [(1 + c Aagc,t)*(1 + c Sagc,t)].

From this equation, it follows that the category level annualized term, Xagcj,A, for the allocation and selection components of the active return in the mixed approach is obtained from:

tεT (1 + Xagt – Xagcj,t + Xagcj,A) = tεT (1 + Xagt),

where, again, the remaining term, 1 + Xagt – Xagcj,t, is taken to be independent of the term being annualized, Xagcj,t.

Putting the summaries of these integral-time equations together side-by-side in order to directly compare them we have:

tεT (1+ XgA) = tεT (1 + Xgt), 

tεT (1 + RPt – Xat + XaA) =tεT (1 + RPt ).

tεT (1 + Xagt – Xagcj,t + Xagcj,A) = tεT (1 + Xagt).

For the pure geometric or arithmetic cases X can be any active return, or attribute at either the portfolio or category level.  For the mixed case, the portfolio level matches the geometric case and is, therefore, only shown for the category level.

Annualization of Geometric Terms Over Non-Unit Year Sub-Periods

Beginning the discussion of cases where some of the sub-periods are not a year with the annualization of simple returns, it is seen that the defining question for sub-periods that are not all single years is: What constant value, when substituted for each yearly value, leads to the same result as obtained by the actual series of the various sub-period values in concert?  The corresponding equation for a pure return is:

(1 + RA)T = t (1 + Rt).

This is because

t (1 + Rt) =  tεT {(1 + Rt)(1/dt)}dt 


= tεT {(1 + RAt)}dt,

where (1 + RAt) is taken to be the annualized value of the single return factor (1 + Rt). We will use the term dt to signify the period for which the element t is defined.  For example, the return Rt is taken to be the return for the period dt.  Thus, the annualization process for the whole period replaces the yearly value RAt with RA:

t (1 + Rt) = tεT {(1 + RA)}dt.

From this it follows that:

t (1 + Rt) = (1 + RA)( dt ) 

= (1 + RA)T
since RA is a constant and the duration of the whole period is the sum of the durations of the sub-periods:

T =  dt. 

Thus, even when each sub-period is not a year, the annualized return factor is the geometric mean of the series of term factors.

Now, take the defining geometric annualization question for a general attribution term to be parallel to the previous defining questions for annualized attribution properties: What constant value can be substituted, for each occurrence of the actual property to be annualized, in the sequence of such actual geometric properties such that, in the context of all other properties being actual, it replicates the fundamental effect (taken, in the area of attribution, to be the value of the corresponding active return) produced by the series of such actual geometric properties for the whole period addressed?  For short, that is: What constant value can replace each single year value of the property and still replicate its fundamental effect?
By definition, the annualized property, XgA, refers to the yearly value that can make the replacement work properly.  That is, XgA is an intensive yearly property that can be the annualized active return, or the annualized portfolio- or category-level allocation, selection or contribution to portfolio level active return.  However, now we are considering the generalized case where the terms, other then the annualized term being sought, in a defining equation are the elements of a temporal series that does not have to be for yearly periods.  In general, the actual terms corresponding to a particular sub-period can be for durations that are parts of a year or multiples of a year.  Furthermore, there is no requirement that any one term in the series has the same duration as any other. Thus, for example, the series of four dt’s can be two quarters, a year and three years: dt = {¼, ¼, 1, 3}.

Recall the definition of the geometric active return factor:

gT =tεT (1 + RPt)]/[tεT (1 + RBt) ].

As follows from the discussion above, the return factor is annualized by raising it to the inverse power of the temporal duration of its period:

gT  = tεT {(1 + RPt)(1/dt)}dt]/tεT (1 + RBt)]. 

Now introduce the geometric attribution term, Xgt, whose annualized definition is sought, by geometrically extracting it from the portfolio return for the period:
gT =tεT {([{1 + RPt}/{1+ Xgt}] *{1+ Xgt})(1/dt)}dt]/[tεT (1 + RBt) ].

Since the geometric term has been geometrically extracted, the resulting ratio, [{1 + RPt}/{1+ Xgt}], is presumed to be independent of the term to be annualized (as is the benchmark term).  This return factor, in the form of a ratio is raised to the 1/dt power, is now annualized when it is directly combined at the same level (i.e. within the term raised to the power of dt) with the annualized term being defined because they both refer to the duration of one year.  Therefore, the process that annualizes the term XgA just needs to replace, outside of the annualizing power 1/dt, the remaining term, {1+ Xgt}, with its annualized version:

gT =tεT {([{1 + RPt}/{1+ Xgt}](1/dt) *{1+ XgA})}dt]/[tεT (1 + RBt) ].

Thus, consistent with the definition of the annualized geometric term, XgA, the annualized factor, {1 + XgA}, is the constant already annualized term that geometrically combines with each annualized term for the period dt that is independent of XgA to produce the geometric active return factor for the period dt that replicates the total effect of the actual values in producing the geometric active return factor.
The last result is equivalent to: 

tεT (1 + RPt) =tεT {([{1 + RPt}/{1+ Xgt}](1/dt) *{1+ XgA})}dt]

Hence, here, in order to be able to combine the already annualized term, XgA, with terms that are also for a single year, we have annualized (raised their return factor to the power 1/dt) everything except the one factor, {1+ XgA}, that, by definition, already refers to a single year.  While this argument is somewhat roundabout for these geometric terms it is of a form that can be used as a template for the arithmetic argument below.  Simplifying this geometric equation further, leads to the same geometric result as before, i.e. the annualized geometric factor is the geometric mean of the actual factors: 

1+ XgA = [tεT (1 + Xgt)](1/T).

Annualization of Arithmetic Terms Over Non-Unit Year Sub-Periods

Here, taking the general defining arithmetic question to be: What constant value can be substituted, for each occurrence of the actual yearly arithmetic property to be annualized, in the sequence of such actual arithmetic properties such that, in the context of all other properties being actual, it reproduces the fundamental effect of the series of such actual arithmetic properties for the whole period?   Or, again: What constant value can replace each single year value of the property and still replicate its fundamental effect?
When we arithmetize the geometric argument, we begin:

aT =tεT (1 + RPt)] – [tεT (1 + RBt) ]

= tεT {(1 + RPt)(1/dt)}dt] – [tεT (1 + RBt) ]. 

Again recall that taking a return factor to the 1/dt power annualizes it.  Now introduce the arithmetic term, Xat, to be annualized by arithmetically extracting it from the portfolio return for the period:
aT =tεT {({1 + RPt  –  Xat}+ Xat)(1/dt)}dt] – [tεT (1 + RBt) ].

Since the arithmetic term has been arithmetically extracted, the resulting sum, [{1 + RPt – Xat}], which can now refer to a period different than a year, is presumed to be independent of the term to be annualized.  Rising this term to the 1/dt power annualizes it.  Therefore, the process that annualizes the term XaA just needs to replace the remaining term, Xat, with its annualized version:

aT =tεT ({1 + RPt – Xat}(1/dt) + XaA)dt] – [tεT (1 + RBt) ].

Thus, as the answer to its defining question, the annualized arithmetic term, XaA, is the constant already annualized term that arithmetically combines with each annualized term for the period dt that is independent of XaA to produce the arithmetic active return for the period dt that replicates the total effect of the actual values.
Note that, in general, in an example where all dt are not equal to one, setting all Xat equal to XaA would not necessarily make the equation true since these terms refer to different lengths of time, dt and one year.

This defining equation, created as a precise direct response to its defining question, supplies the defining formalization of the annualized arithmetic attribute in the general situation where the periods covered by the time series of the actual values for the attribute are not all of one year in duration.  It simplifies to:

tεT (1 + RPt ) =tεT [(1 + RPt – Xat)(1/dt) + XaA]dt.

This allows us to annualize every arithmetic attribution term for any series of time intervals, where the fundamental equation for each single-period attribution term, Xat, is taken to be an arithmetic component of the amount that the single-period portfolio return is above the single-period benchmark return.

An Example of the Annualization of Arithmetic Terms Over Non-Unit Year Sub-Periods

The immediately previous formula for annualizing arithmetic attribution terms is repeatedly employed in the example shown in the accompanying table.  There, the weights and returns for each of three quarters (of a year) are assumed for issues denoted ‘1’, ‘2’, ‘3’ and ‘4’, which comprise all the input data and are shown in bold.  These issues are bucketed in sequential pairs into categories ‘a’ and ‘b’.  From this set of base data are calculated, by the classical means previously discussed, each quarter’s values for the attributes and the annualized value of the return for each issue (here taken to be common to the portfolio and benchmark), the annualized value of the return for each category in the portfolio and in the benchmark, and the annualized value of the returns for the portfolio and the benchmark themselves.  In addition, by specifically employing the above implicit equation for annualized arithmetic terms, XaA, are calculated the annualized value of each active return of the portfolio and of both the categories.  Also calculated, using the same equation, are the annualized portfolio- and category-level allocation and selection attributes and the annualized category-level contributions to the active return, ac,A.

The annualized values designated with *** are those obtained by iteration.  They are applied to the in-put data for the three quarters (dt = ¼) at their appropriate levels.  Thus, the formula

tεT (1 + RPc,t ) =tεT [(1 + RPc,t – Xac,t)4 + Xac,A](1/4) 

is applied using RPc,t for the first two such results, since the fundamental equation is taken to be relative to the category-level for the terms

Xac,A = (RPa – RBa)A 

and for 

Xac,A = (RPb – RBb)A.

However, it is easy to imagine defining Xac,A relative to RPt where, now, the defining equation for Xac,A would be at the portfolio level.
The rest of the terms obtained via iteration are relative to the portfolio level and, thus, employ RPt  instead of RPc,t in their defining equation:
tεT (1 + RPt ) =tεT [(1 + RPt – Xat)4 + XaA] (1/4).

This is the case even for category-level terms like ac,A, Aac,A and Bac,A when their fundamental definition is taken to focus upon the portfolio-level active return, aT.
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It is instructive to note the following differences that result from the table’s iterative solutions.

The annualization of the active return for category ‘a’ 

Xaa,t = RPa,t – RBa,t,
has as its proper context category ‘a’ returns, RPa,t:

tεT (1 + RPa,t ) =tεT [(1 + RPa,t – Xaa,t)(1/dt) + Xaa,A]dt, 

and gives:
Xaa,A = (RPa – RBa)A = 260 bp.

The difference, RPa,A – RBa,A, between the annualization of the return of category ‘a’ in the portfolio, RPa,A, and the annualization of the return of category ‘a’ in the benchmark, RBa,A, where again each has its proper context of category ‘a’ return, RPa,t or RBa,t:

t (1 + RPa,A)  = t (1 + RPa,t),

and

t (1 + RBa,A)  = t (1 + RBa,t),

gives:

RPa,A – RBa,A = 307 bp.

(RPa,A – RBa,A is not the annualization of an active return but just the difference of annualized returns.)

And the annualization of the contribution of category ‘a’ to the active return of the total portfolio, a,t, has as its proper context the portfolio-level with its portfolio-level return, RPt:

tεT (1 + RPt ) =tεT [(1 + RPt – Xat)(1/dt) + XaA]dt.

where 

Xat = a,t.

This gives:

a,A = 1045 bp.

The differences between the first and last ([RPa – RBa]A and a,A) of these three terms follows because, while at the portfolio-level the active return for a single sub-period, RPt – RBt, is identically equal to the contribution to the portfolio-level active return of the period, at, (whether the period be the sub-period, t, or the whole period, T), it is not the case at the category-level.   Instead the active return for a single sub-period at the category-level, RPc,t – RBc,t, is just the difference between the portfolio return of a category and the benchmark return of that category, but it is not equal to the contribution, ac,t, to the portfolio-level active return of the period t.  That is: 
aT = RPT – RBT = tεT (1 + RPt) – tεT (1 + RBt),  

and 

c ac,t = at = RPt – RBt = c [wPc,t*RPc,t – wBc,t*RBc,t]  

but

at = c [wPc,t*RPc,t – wBc,t*RBc,t] ≠ c [RPc,t – RBc,t]

and

ac,t = wPc,t*RPc,t – wBc,t*RBc,t ≠ RPc,t – RBc,t.
Unavoidable Questions

It might be objected that this 3-quarter example is inappropriate because it is an often-stated prohibition that data for periods of less than a year should not be annualized.  Since this example is only for demonstration purposes, the arguments of this chapter are not affected. However, though one may not like to extrapolate from less than a year to a year because it entails more uncertainty than desired, it must be said that all extrapolation entails uncertainty.  If one has data for less than a year, it is difficult to know what one is to expect for the year besides the annualized results.  If one has the one return for the period of many years of data then it is still an uncertain estimate that the following year’s value will be equal to the past’s annualized value.  Thus, if one wants an estimate of a property in the future (i.e. an out of sample prediction) based on the results from a time period of different duration than that future property, annualization is the only proper way to supply it.  Similarly, if one wants to compare the results of periods of less than a year with other data of more or of (differently) less than a year, then annualization is the only proper way to do it.  Similar comments can be made regarding sporadic sequences whose union is not continuous. To say that one should not seek indications of the future (or any out of sample property) when less than a year’s worth of data is available, or that one should not evaluate results comparatively for periods of less than a year or for discontinuous periods is simply to wish that the world did not require one to make decisions in less than ideal circumstances.  Such wishes are idle.
Annualization of Mixed Geometric and Arithmetic Terms Over Non-Unit Year Sub-Periods

The mixed version differs from the geometric version only at the level of category decomposition.  Applying previous arguments at the category-level, the variable-period annualization equation for terms of the mixed approach is: 

gT =tεT [(1 + RPt)/(1+ Xagt)]*(1+ Xagt)}(1/dt)]dt/[tεT (1 + RBt) (1/dt)]dt 

=tεT [(1 + RPt)/(1+ Xagt)] (1/dt)*[(1+ Xagt – Xagc,t)(1/dt) + Xagc,A]}dt/tεT (1 + RBt) (1/dt)]dt,

which reduces to:

tεT (1 + Xagt) =tεT [(1+ Xagt – Xagc,t)(1/dt) + Xagc,A]dt.

Again, here the adjusted terms, (1 + RPt)/(1+ Xagt) and (1+ Xagt – Xagc,t), are constructed so that they can be taken to be independent of the term that is being annualized, Xagc,t.  In this way, the replacement of the term being annualized is complete by just applying it to the last term in the numerator.

Summary
As was done for the integral year case, for ease of direct comparison we group the equations that summarize the formal results of this whole chapter, which are applicable to cases that are not restricted to integral or contiguous years.  The similarities of the results of the different approaches are made clear by:

tεT (1 + RPt ) =tεT {[(1 + RPt)/(1+ Xgt)](1/dt)*(1+ XgA)}dt,    

tεT (1 + RPt ) =tεT [(1 + RPt – Xat)(1/dt) + XaA]dt,
tεT (1 + RPt ) =tεT [(1 + RPt)/(1+ Xagt)] (1/dt)*[(1+ Xagt – Xagc,t)(1/dt) + Xagc,A]}dt
The formal results are more simply stated:

tεT (1 + Xgt) = tεT (1+ XgA),

tεT (1 + RPt ) =tεT [(1 + RPt – Xat)(1/dt) + XaA]dt,

tεT (1 + Xagt) =tεT [(1+ Xagt – Xagc,t)(1/dt) + Xagc,A]dt.

In general, the annualized term in the last two of these equations, for the arithmetic and mixed approaches respectively, must be solved for by iteration.  As before, the geometric and arithmetic equations apply to both portfolio- and category-level properties, but the mixed equations apply only to category-level properties since the mixed portfolio-level properties are defined by the same equation that applies to the pure geometric properties:

tεT (1 + Xagt) = tεT (1+ XagA).

These results generalize those derived as answers to the economic questions for series of input data corresponding to yearly time periods to series corresponding to time periods of varying and arbitrary durations and contiguity where parallel questions apply.  Thus, even at this level of generalization, an annualized value is still taken to be the constant value that can replace each and every such dependent annual value in its defining statement so that it reproduces the actual fundamental result for that statement over the total period.  Furthermore, this approach always makes the most economic sense when carried out while keeping all other terms at their actual values.

Conclusion

Assume that we know the sequences of portfolio- and category-level single-period portfolio and benchmark returns and the allocation, selection and, where it exits, contribution attributes for the geometric, arithmetic and mixed arithmetic and geometric cases that combine to give the active returns.  Then, in a manner conceptually, but not always formally, parallel to the derivation of annualized returns from the series of single-period returns, this chapter shows how to obtain all the annualized portfolio- and category-level active returns, allocations, selections and contributions.

The basic test that has motivated this chapter’s approach to annualization is that for any term, whether it be a return or a geometric, arithmetic or mixed active return or contribution to an active return (or even certain appropriately formulated risk characteristics), then by the very intent of annualization, if it has the value of, say, 50% for every year in a series of years then its annualized value over the whole period composed of these years must also be 50%.  Simply put: If a value is 50% every year than its annualized value is 50%.  This requirement forms the very foundation of the approach presented here.  The common approach to annualization of attribution terms fails because it contradicts this necessary property.  

Beyond this test, like all valid terms, an annualized term must be a precise answer to a clear question as opposed to a name whose calculation is removed from its intended meaning by constructions directed by formal considerations.
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